Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials.
نویسندگان
چکیده
Metal-organic frameworks (MOFs) are promising materials for applications such as separation, catalysis, and gas storage. A key indicator of their structural stability is the shear modulus. By density functional theory calculations in a 106-atom supercell, under the local density approximation, we find c(11)=29.2 GPa and c(12)=13.1 GPa for Zn-based MOF 5. However, we find c(44) of MOF-5 to be exceedingly small, only 1.4 GPa at T=0 K. The binding energy E(ads) of a single hydrogen molecule in MOF-5 is evaluated using the same setup. We find it to be -0.069 to -0.086 eVH(2) near the benzene linker and -0.106 to -0.160 eVH(2) near the Zn(4)O tetrahedra. Substitutions of chlorine and hydroxyl in the benzene linker have negligible effect on the physisorption energies. Pentacoordinated copper (and aluminum) in a framework structure similar to MOF-2 gives E(ads) approximately -0.291 eVH(2) (and -0.230 eVH(2)), and substitution of nitrogen in benzene (pyrazine) further enhances E(ads) near the organic linker to -0.16 eVH(2), according to density functional theory with local density approximation.
منابع مشابه
Synthesis and Characterization of Zn3 (BTC)2 Nanoporous Sorbent and its Application for Hydrogen Storage at Ambient Temperature
Metal organic frameworks (MOFs) are considered an interesting option for hydrogen storage. These materials show an exceptional H2 uptake. Here, Zn3(BTC)2 as MOF was synthesized with a solvothermal method. The phase stability and microstructure of the Zn3(BTC)2 was characterized in terms of their properties and structures, using a number of analytical techniques including FT-IR, XRD, SEM, BET ...
متن کاملFabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors
High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...
متن کاملNew isoreticular metal-organic framework materials for high hydrogen storage capacity.
We propose new isoreticular metal-organic framework (IRMOF) materials to increase the hydrogen storage capacity at room temperature. Based on the potential-energy surface of hydrogen molecules on IRMOF linkers and the interaction energy between hydrogen molecules, we estimate the saturation value of hydrogen sorption capacity at room temperature. We discuss design criteria and propose new IRMOF...
متن کاملMWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property
In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...
متن کاملIncreasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts
Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 8 شماره
صفحات -
تاریخ انتشار 2006